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Introduction

1. Research aim: To understand how sea-level extremes
along the U.S. East Coast have varied over space and time
in the past and to make predictions for how these
patterns will evolve in the future under different climate
change projections.

2. Tools: Oceanography, climate-science, statistical
methodology (i.e. extreme value theory. spatial statistics)

3. Data:
(a) Hourly sea-level time-series taken from NOAA observation

stations along the U.S. East Coast over a 40-year period.
(b) Corresponding model-generated (ADCIRC) reconstruction

of historic sea-level time-series.
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NOAA Sea-Level Observation Stations
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Exploratory Data Analysis
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Exploratory Data Analysis
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Exploratory Data Analysis

9
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Exploratory Data Analysis
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Background on Univariate Extreme Value Theory

Generalized Extreme Value (GEV) Distribution

Let X1, X2, ..., Xn be i.i.d. random variables with common CDF F
and let Mn := max{X1, ..., Xn}.

Then, when appropriately centered and scaled, Mn converges
in distribution to a member of the GEV family:

G(z) := exp

{
−
[
1+ ξ(

z− µ

σ
)

]− 1
ξ

+

}
(1)

• µ ∈ R is the location parameter
• σ ∈ R+ is the scale parameter
• ξ ∈ R is the shape parameter
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Background on Univariate Extreme Value Theory

r-Year Return Level

The GEV parameters can be used to characterize extremes via
the quantile function of the GEV.

For Z ∼ GEV(µ, σ, ξ), the 1-p quantile of Z (i.e. the value that is
exceeded with probability p) is given by:

Zp(µ, σ, ξ) :=
{

µ− σ
ξ [1− {− log(1− p)}−ξ] ξ ̸= 0

µ− σ log{− log(1− p)} ξ = 0
(2)

When each year contains exactly one block the r-year return
level is given by Zr−1(µ, σ, ξ)
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Background on Univariate Extreme Value Theory

Inference

The GEV parameters are usually estimated by a likelihood
based method.

In particular, for Z1, ..., Zm
iid∼ GEV(µ, σ, ξ) the maximum

likelihood estimate (MLE) of θ := (µ, σ, ξ)t is:

θ̂ := (µ̂, σ̂, ξ̂)t := argmax
µ,σ,ξ

{
ℓ(µ, σ, ξ|Z1, ..., Zm)

}
(3)

where ℓ(µ, σ, ξ|Z1, ..., Zm) is the log-likelihood of Z1, ..., Zm.

The r-year return level estimate is simply Zr−1(µ̂, σ̂, ξ̂).
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Background on Univariate Extreme Value Theory

Inference

From likelihood theory it follows that the distribution of θ̂ is
approximately N3(θ, V) where V is the inverse of the observed
information matrix evaluated at θ̂.

Therefore, the delta-method implies that the distribution of
Zp(θ̂) is approximately N1

(
Zp(θ),∇Zp(θ̂)tV∇Zp(θ̂)

)
.

17



Modeling Questions

1. How do the GEV parameters and r-year return levels
depend upon their spatial location?

2. How should the NOAA data be used to validate the ADCIRC
reconstruction?

3. How should one incorporate global climatic information?
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Methods: Overview

Idea (Russell et al. 2019): Multivariate spatial extreme value
model fit by a 2-stage inference procedure.

1. a. Independently model the yearly (detided daily mean)
sea-level maxima at each station using the GEV
distribution.

b. Perform inference via MLE.
2. a. Model the MLE output from stage 1 as a multi-dimensional

Gaussian process with measurement error.
b. Perform inference via MLE.

The output of stage 2 can then be used to spatially interpolate
the GEV parameters and return-levels along the coastline via
Kriging.
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Methods: Latent Process with Measurement Error

Let Y(s) be the yearly (detided daily mean) maximum sea-level
at location s ∈ D ⊂ R2 and assume

Y(s) ∼ GEV
(
µ(s), σ(s), ξ(s)

)
To characterize how the sea-level extremes vary spatially
define, at both observed and unobserved locations, the latent
Gaussian process

θ(s) = β + η(s) (4)

for θ(s) :=
(
µ(s), log(σ(s)), ξ(s)

)t.
Here β is a vector of mean parameter values over D and η(s) a
vector of spatially correlated random effects.
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Methods: Latent Process with Measurement Error

The spatially correlated random effects are defined by the
relation

η(s) := Aδ(s) (5)

where A is a lower-triangular matrix and δ(s) is a vector of
independent second-order stationary Gaussian processes with
mean 0 and covariance function

Cov
(
δi(s), δi(s’)

)
= exp

(
−||s− s’||

ρi

)
(6)

for s, s’ ∈ D where ρi > 0 is the range parameter.
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Methods: Latent Process with Measurement Error

For NOAA station l ∈ {1, ..., 26}, let θ̂(sl) be the point-wise MLE
for the GEV distribution associated with Y(sl). We assume that

θ̂(sl) = θ(sl) + ϵ(sl) (7)

where ϵ(sl) is estimation error that is independent of η.

Thus, the latent process with measurement error at station l is

θ̂(sl) = θ(sl) + ϵ(sl)
= β + η(sl) + ϵ(sl)
= β + Aδ(sl) + ϵ(sl)

(8)
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Methods: Latent Process with Measurement Error

Now, let

Θ :=
(
θ(s1), ..., θ(s26)

)t (9)

and

Θ̂ :=
(
θ̂(s1), ..., θ̂(s26)

)t (10)

where

Cov
(
Θ̂
)
:= Σρ,A.
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Methods: Latent Process with Measurement Error

Further, assume that

ϵ :=
(
ϵ(s1), ..., ϵ(s26)

)t ∼ N78(0,W) (11)

where W is unknown and estimated via a regularized
non-parametric bootstrap procedure:

Wtap := Wbs ◦ Ttap(λ) (12)

where Wbs is the non-parametric bootstrap estimate of W and
Ttap(λ) is a taper matrix with range parameter λ > 0
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Methods: Latent Process with Measurement Error

The taper matrix is defined by the relation

Wtap := CW2(λ)⊗ (131t3) (13)

where CW2(λ) is a matrix whose entries are computed using the
Wendland 2 covariance function:

[CW2(λ)]ij :=

{
(1− ||si−sj||

λ )6( 353 (
||si−sj||

λ )2 + 6( ||si−sj||λ ) + 1 ||si − sj|| ≤ 0
0 ||si − sj|| > 0
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Methods: Latent Process with Measurment Error

Thus,

Θ̂ = Θ+ ϵ (14)

and hence

Θ̂ ∼ N78
(
126 ⊗ β,ΣA,ρ +Wtap

)
(15)

Therefore, given Θ̂ (i.e. the output from the 1st stage of
inference) and Wtap, we can obtain β̂, ρ̂ and Â via MLE.
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Methods: Kriging (Gaussian Process Regression)

Given β̂, ρ̂ and Â (i.e. the output from the 2nd stage of
inference) we then interpolate θ̂(s) over s ∈ D via Kriging:

θ̂(s) = β̂ + Cov
(
θ̂(s), Θ̂

)
(Σρ̂,Â +Wtap)

−1(Θ̂− 126 ⊗ β̂
)

Var
(
θ̂(s)

)
= Var

(
θ̂(s)

)
−Cov

(
θ̂(s), Θ̂

)
(Σρ̂,Â+Wtap)

−1Cov
(
θ̂(s), Θ̂

)t
and compute the 100-Year Return Level estimates for the
Yearly (Detided Daily Mean) Sea Level Maxima:

Z100−1(s) = Z100−1(θ̂(s))

Var
(
Z100−1(s)

)
= ∇Zp(θ̂(s))tVar

(
θ̂(s)

)
∇Zp(θ̂(s))
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Preliminary Results: Stage 1 Output (ADCIRC)
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Preliminary Results: Stage 1 Output (ADCIRC)
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Preliminary Results: Stage 1 Output (NOAA)
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Preliminary Resutls: Stage 1 Output (ADCIRC)
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Preliminary Resutls: Stage 1 Output (NOAA)
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Preliminary Results: Stage 2 Output (ADCIRC)
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Preliminary Results: Stage 2 Output (NOAA)
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Preliminary Results: 100-Year Return Level Heat Map for Yearly
(Detided Daily Mean) Sea-Level Maxima
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Preliminary Results: 100-Year Return Level Surface for Yearly
(Detided Daily Mean) Sea-Level Maxima
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Preliminary Results: 100-Year Return Level Surface for Yearly
(Detided Daily Mean) Sea-Level Maxima
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Next Steps & Future Work

Next Steps

1. Use the 100-year return level surface based on the NOAA
data to improve the performance of the corresponding
surface based on the ADCIRC reconstruction.

Future Work

1. Introduce global climatic covariate(s) in the 1st stage of
inference.

2. Examine how the r-year return-level surface along the
coastline changes as as a function of these covariates.
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