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Introduction

1. Research aim: To understand how sea-level extremes
along the U.S. East Coast have varied over space and time
in the past and to make predictions for how these
patterns will evolve in the future under different climate
change projections.

2. Tools: Oceanography, climate-science, statistical
methodology (i.e. extreme value theory. spatial statistics)
3. Data:

(a) Hourly sea-level time-series taken from NOAA observation
stations along the U.S. East Coast over a 40-year period.

(b) Corresponding model-generated (ADCIRC) reconstruction
of historic sea-level time-series.



NOAA Sea-Level Observation Stations
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Exploratory Data Analysis
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Exploratory Data Analysis

ADCIRC Reconstruction of Hourly Sea-Level at Wrightsville Beach Observed (NOAA) Hourly Sea-Level at Wrightsville Beach
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Exploratory Data Analysis

ADCIRC Reconstruction of Hourly Sea-Level at Wrightsville Beach
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Exploratory Data Analysis

ADCIRC Reconstruction of Hourly Sea-Level at Wrightsville Beach
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Exploratory Data Analysis
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Exploratory Data Analysis

Time-Series for Observed (NOAA) Yearly (Detided Daily Mean) Sea-Level Maxima
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Exploratory Data Analysis

Kernal Density Estimates for ADCIRC Reconstruction of Yearly (Detided Daily Mean) Sea-Level Maxima
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Exploratory Data Analysis

Kernal Density Estimates for Observed (NOAA) Yearly (Detided Daily Mean) Sea-Level Maxima
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Boxplots for ADCIRC Reconstruction of Yearly (Detided Daily Mean) Sea-Level Maxima
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Station

Boxplots for Observed (NOAA) Yearly (Detided Daily Mean) Sea-Level Maxima
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Background on Univariate Extreme Value Theory

Generalized Extreme Value (GEV) Distribution

Let Xq, X5, ..., X, be i.i.d. random variables with common CDF F
and let Mn = maX{X’l, ...,Xn}.

Then, when appropriately centered and scaled, M, converges
in distribution to a member of the GEV family:

)= eXp{ - [1 +£(Z;“)]f}

- u € R is the location parameter
- o0 € RT is the scale parameter

- £ € Ris the shape parameter
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Background on Univariate Extreme Value Theory

r-Year Return Level

The GEV parameters can be used to characterize extremes via
the quantile function of the GEV.

For Z ~ GEV(pu, 0, €), the 1-p quantile of Z (i.e. the value that is
exceeded with probability p) is given by:

— [ —{~log(1—p)}—¢ 0
p — o log{—log(1—p)} £=0
When each year contains exactly one block the r-year return

level is given by Z,—1(u, 0, &)
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Background on Univariate Extreme Value Theory

Inference

The GEV parameters are usually estimated by a likelihood
based method.

In particular, for Zq, ..., Zm S GEV(u, 0,&) the maximum
likelihood estimate (MLE) of 6 := (u, 0, &)t is:

0 :=(pn,8,6)" = argmax{ﬁ(u,a,f\Zq, .-.,Zm)} (3)

Mao-vf
where l(u, 0,€|Z4, ...,Zm) is the log-likelihood of Zy, ..., Zpm.

The r-year return level estimate is simply Zr_1([,6,§).



Background on Univariate Extreme Value Theory

Inference

From likelihood theory it follows that the distribution of 8 is
approximately N3(6, V) where V is the inverse of the observed
information matrix evaluated at 4.

Therefore, the delta-method implies that the distribution of
Z5(0) is approximately N7 (Zp(0), VZp(8)1VV Z,(8)).



Modeling Questions

1. How do the GEV parameters and r-year return levels
depend upon their spatial location?

2. How should the NOAA data be used to validate the ADCIRC
reconstruction?

3. How should one incorporate global climatic information?



Methods: Overview

Idea (Russell et al. 2019): Multivariate spatial extreme value
model fit by a 2-stage inference procedure.

1. a. Independently model the yearly (detided daily mean)
sea-level maxima at each station using the GEV
distribution.

b. Perform inference via MLE.

2. a. Model the MLE output from stage 1 as a multi-dimensional
Gaussian process with measurement error.
b. Perform inference via MLE.

The output of stage 2 can then be used to spatially interpolate
the GEV parameters and return-levels along the coastline via
Kriging.
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Methods: Latent Process with Measurement Error

Let Y(s) be the yearly (detided daily mean) maximum sea-level
at location s € D ¢ R? and assume

Y(s) ~ GEV(u(s), 7(s), £(5))
To characterize how the sea-level extremes vary spatially

define, at both observed and unobserved locations, the latent
Gaussian process

6(s) = B+ n(s) (4)

for 8(s) := (u(s), log(a(s)), £(5)) "
Here 3 is a vector of mean parameter values over D and n(s) a
vector of spatially correlated random effects.
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Methods: Latent Process with Measurement Error

The spatially correlated random effects are defined by the

relation
n(s) := Ad(s) (5)

where A is a lower-triangular matrix and d(s) is a vector of
independent second-order stationary Gaussian processes with
mean 0 and covariance function

Cov(8i(s), 0i(s')) = exp (—Hsp—sH) (6)

fors, s’ € D where p; > 0 is the range parameter.
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Methods: Latent Process with Measurement Error

For NOAA station [ € {1, ..., 26}, let (s;) be the point-wise MLE
for the GEV distribution associated with Y(s;). We assume that

6(s)) = 0(s)) + €(s)) (7)

where ¢(s) is estimation error that is independent of 7.

Thus, the latent process with measurement error at station [ is
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Methods: Latent Process with Measurement Error

Now, let

© == (6(s1), .-, 8(s2))" (9)
and

O = (8(s1), ... 6(s2)) (10)
where
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Methods: Latent Process with Measurement Error

Further, assume that

€ := (e(51), ., €(S26)) " ~ N3g(0, W) (1)

where W is unknown and estimated via a regularized
non-parametric bootstrap procedure:

where Wy, is the non-parametric bootstrap estimate of W and
Ttap(A) is a taper matrix with range parameter A > 0

2%



Methods: Latent Process with Measurement Error

The taper matrix is defined by the relation

Wiap := Cw,(N) ® (1315) (13)

where Cy, () is @ matrix whose entries are computed using the
Wendland 2 covariance function:

() |/ | f ||
G i { (= s esely 4 (a1 s -5 <o
° l|si—s;jl| >0
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Methods: Latent Process with Measurment Error

Thus,

and hence

O ~ Nig (16 ® B, Za p + Wiap) (15)

Therefore, given O (i.e. the output from the 1st stage of
inference) and Wyqp, we can obtain 3, p and A via MLE.
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Methods: Kriging (Gaussian Process Regression)

Given 3, p and A (i.e. the output from the 2nd stage of
inference) we then interpolate (s) over s € D via Kriging:

~

() = B+ Cov(B(s),0) (X ;5 + Wiap) (O — 125 ® B)
Var(6(s)) = Var(8(s))—Cov(8(s), ) (X ;+Wiap) "' Cov(8(s), ©)'

Cb>

and compute the 100-Year Return Level estimates for the
Yearly (Detided Daily Mean) Sea Level Maxima:

Z100-1(S) = Z1po—1(8(s))

var(Zypo-1(s)) = VZp(8(s))Var(8(s))VZ,(6(s))
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Preliminary Results: Stage 1 Output (ADCIRC)

GEV Parameter Estimate at Each Station (ADCIRC)

station location log.scale shape
FortPulaski 0.53 -2.14 0.00
CharlestonHarbor 0.47 -2.20 -0.05
SpringmaidPier 0.44 -2.18 -0.08
WrightsvilleBeach 0.45 -2.00 -0.14
Beaufort 0.42 -2.34 0.13
DuckPier 0.61 -2.15 -0.15
CBBTChesapeakeChannel 0.60 -2.10 -0.05
OceanCitylnlet 0.58 -2.02 -0.03
Lewes 0.72 -1.79 -0.03
BrandywineShoallLight 0.68 -1.81 -0.11
ReedyPoint 0.63 -1.93 -0.08
CapeMayFerryTerminal 0.67 -1.80 -0.13
AtlanticCity 0.67 -1.89 0.02
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Preliminary Results: Stage 1 Output (ADCIRC)

GEV Parameter Estimates at Each Station (ADCIRC)

station location log.scale shape
SandyHook 0.66 -1.88 0.00
KingsPoint 0.69 -1.84 0.06
Montauk 0.54 -1.94 -0.13
Bridegport 0.63 -1.94 -0.06
NewHaven 0.61 -1.99 -0.09
NewLondon 0.54 -2.07 -0.10
Nantucketlsland 0.49 -2.02 0.00
WoodsHole 0.44 -2.33 -0.14
Boston 0.53 -1.89 -0.25
Wells 0.46 -2.29 -0.21
Portland 0.45 -2.43 -0.26
BarHarbor 0.39 -2.78 -0.07
EastportPassamaquoddyBay 0.35 -2.92 -0.04

29



Preliminary Re

ults: Stage 1 Output (NOAA)

GEV Parameter Estimates at Each Station (NOAA)

station location log.scale shape
FortPulaski 0.467 -2.159 -0.031
CharlestonHarbor 0.405 -2.140  -0.087
Beaufort 0.356 -2.406 0.156
DuckPier 0.549 -2.197  -0.248
Lewes 0.660 -1.820  0.055
CapeMayFerryTerminal 0.642 -1.744  -0.167
AtlanticCity 0.582 -1.892 0.032
SandyHook 0.611 -1.857  -0.010
Bridegport 0.576 -1.738  -0.126
NewlLondon 0.481 -1.910 -0.182
Nantucketlsland 0.473 -1.987 0.075
WoodsHole 0.400 -2.181 -0.166
Boston 0.508 -1.783  -0.216
Portland 0.403 -2.238  -0.190
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Preliminary Resutls: Stage 1 Output (ADCIRC)

Regularized Non-Parameteric Bootstrap Estimate for W (ADCIRC)
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Preliminary Resutls: Stage 1 Output (NOAA)

Regularized Non-Parameteric Bootstrap Estimate for W (NOAA)
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Preliminary Results: Stage 2 Output (ADCIRC)

Gaussian Process Parameter Estimates (ADCIRC)

beta rho A

0.50| 396.91 0.10 0.00
-2.27 | 545.96 0.19 -0.10
-0.08 | 945.83 0.06 -0.02
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Preliminary Results: Stage 2 Output (NOAA)

Gaussian Process Parameter Estimates (NOAA)

beta rho A
0.48 | 228.23 0.09 0.00 0
-2.09 | 490.30 0.18 -0.07
-0.08 | 809.65 0.01 0.00
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Preliminary Results: 100-Year Return Level Heat Map for Yearly
(Detided Daily Mean) Sea-Level Maxima
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Preliminary Results: 100-Year Return Level Surface for Yearly

(Detided Daily Mean) Sea-Level Maxima

100-Year Return Level Surface for Yearly (Detided Daily Mean) Sea-Level Maxima over the U.S. East Coast
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Preliminary Results: 100-Year Return Level Surface for Yearly

(Detided Daily Mean) Sea-Level Maxima

100-Year Return Level Surface for Yearly (Detided Daily Mean) Sea-Level Maxima over the U.S. East Coast
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Next Steps & Future Work

Next Steps

1. Use the 100-year return level surface based on the NOAA
data to improve the performance of the corresponding
surface based on the ADCIRC reconstruction.

Future Work

1. Introduce global climatic covariate(s) in the 1st stage of
inference.

2. Examine how the r-year return-level surface along the
coastline changes as as a function of these covariates.
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