Date: January $3^{s t}$, 2022
Prepared by Brian N. White

Problem:

Lex $X:=\left(X_{1}, \ldots, X_{n}\right)^{t} \sim \mathcal{N}_{n}(0, \Sigma)$ and $U:=\max \left\{X_{1}, . ., X_{n}\right\}$. Find an upper bound on $\mathbb{E}(U)$.
Solution:
Observe that

$$
e^{t \mathbb{E} U} \leq \mathbb{E} e^{t U}=\mathbb{E} \max _{i}\left\{e^{t Y_{i}}\right\} \leq \sum_{1}^{n} \mathbb{E} e^{t Y_{i}}=\sum_{1}^{n} M_{Y_{i}}(t) \leq \sum_{1}^{n} e^{t^{2} \frac{\sigma^{2}}{2}}=n e^{t^{2} \frac{\sigma^{2}}{2}}
$$

where $M_{Y_{i}}(t)$ denotes the moment generating function of Y_{i} evaluated at t and $\sigma^{2}:=\max _{i}\left\{(\Sigma)_{i i}\right\}$. Note, the first inequality is a consequence of the convexity of e^{x} and Jensen's inequality. The subsequent equality follows from the fact that e^{x} is monotone increasing.

Taking logs on both sides of this inequality and dividing by t (assuming $t \neq 0$) gives

$$
\mathbb{E} U \leq \frac{\log (n)}{t}+\frac{t \sigma^{2}}{2}:=g(t)
$$

Thus, to find the tightest bound, it suffices to find the global minimum of g

$$
g^{\prime}(t)=\frac{\log (n)}{t^{2}}+\frac{\sigma^{2}}{2} \stackrel{\text { set }}{=} 0 \Longrightarrow t_{o p t}=\left(\frac{2 \log (n)}{\sigma^{2}}\right)^{\frac{1}{2}} .
$$

Plugging $t_{\text {opt }}$ into g and some algebra reveals that

$$
g\left(t_{o p t}\right)=\sqrt{2 \sigma^{2} \log (n)}
$$

Therefore,

$$
\mathbb{E} U \leq \sqrt{2 \sigma^{2} \log (n)}
$$

