Date: January ${ }^{\text {st }}, 2022$
Prepared by Brian N. White

Problem:

Let G be a $k \times n$ random matrix with i.i.d standard normal entries. Further, let $v \in \mathbb{R}^{n}$ such that $\|\nu\|_{2}=1$. Find the distribution of $\|G v\|_{2}^{2}$.
Solution:
Let

$$
G:=\left(\begin{array}{ccc}
z_{11} & \ldots & z_{1 n} \\
\vdots & \ddots & \vdots \\
z_{k 1} & \ldots & z_{k n}
\end{array}\right)
$$

and

$$
v:=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
$$

Then,

$$
G v=\left(\begin{array}{c}
v_{1} z_{11}+\cdots+v_{n} z_{1 n} \\
\vdots \\
v_{1} z_{k 1}+\cdots+v_{n} z_{k n}
\end{array}\right) \stackrel{d}{=}\left(\begin{array}{c}
N\left(0,\|v\|_{2}^{2}\right) \\
\vdots \\
N\left(0,\|v\|_{2}^{2}\right)
\end{array}\right)=\left(\begin{array}{c}
N(0,1) \\
\vdots \\
N(0,1)
\end{array}\right)=\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{k}
\end{array}\right)
$$

where $Z_{j} \Perp Z_{k} \forall j \neq k$. Thus, $G v$ is a vector of independent standard normal random variables. This follows from the assumption that the entries of G are independent of one another and that linear combinations of independent normal random variables are normal.

It follows that

$$
\|G v\|_{2}^{2}=Z_{1}^{2}+\cdots+Z_{1}^{2} \sim \chi_{k}^{2}
$$

as the square of a standard normal random variable is χ_{1}^{2} and sums of independent χ_{1}^{2} random variables are chi-squared with degrees of freedom equal to the number of terms in the sum.

